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Symplectic manifolds and Hamiltonians

(M2n,ω) - ω - a closed nondegenerate 2-form.
Example
1. Cotangent bundle T ∗X . It has a tautological 1-form σ: if φ ∈ T ∗X
and v ∈ TφT ∗X , then

σ|φ(v) = 〈φ,dπ(v)〉 (π : T ∗X → X).

The symplectic form is then ω = dσ.
If q1, . . . ,qn are local coordinates on X and p1, . . . ,pn the induced
coordinates on the fibres (in the local frame dq1, . . . ,dqn), then

σ =
n

∑
i=1

pidqi and ω =
n

∑
i=1

dpi ∧dqi .

2. Coadjoint orbits. G-Lie group, g its Lie algebra, O a coadjoint G-orbit
(O ⊂ g∗). At X ∈ O, any tangent vector is of the form X([ρ, ·]) for a
ρ ∈ g.
The Kostant-Kirillov-Souriau symplectic form on O is defined by

ω|X
(
X([ρ1, ·]),X([ρ2, ·])

)
= X([ρ1,ρ2]).



To a smooth function H : M→ R on a symplectic manifold we
associate its Hamiltonian vector field XH , which is simply the
symplectic gradient:

dH(v) = ω(XH ,v) ∀v ∈ TM,

and consider the corresponding vector field flow: ẋ(t) = XH . This is
called a Hamiltonian flow, and H is called a Hamiltonian. If
ω = ∑

n
i=1 dpi ∧dqi , then

XH =
n

∑
i=1

∂H
∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi
.

Example Take M = T ∗R' R×R with ω = dp∧dq and the
Hamiltonian H = p2/2 + U(q) (U- a potential). Then XH =

(
p,− ∂U

∂q

)
,

so that the flow is defined by the equations q̇ = p, ṗ =− ∂U
∂q . These

equations reduce to Newton’s equation q̈ =− ∂U
∂q .

Completely integrable Hamiltonian systems

Observe that the Hamiltonian is always constant along the flow:
d
dt H(x(t)) = dH(ẋ(t)) = dH(XH) = ω(XH ,XH) = 0.
More generally, we can consider two (or more) Hamiltonians H1,H2

such that H1 stays constant along the flow of H2 and vice versa. It is
easy to see that this condition is equivalent to ω(XH1 ,XH2) = 0. One
says that H1 and H2 (Poisson) commute.
Thus, if we have k commuting Hamiltonians H1, . . . ,Hk , then the
resulting Rk -action leaves invariant H1, . . . ,Hk . In particular, if the
action is to have k -dimensional orbits, then k ≤ n, where dimM = 2n.
If k = n and the orbits are generically n-dimensional, then we say that
our Hamiltonian system is completely integrable (in the sense of
Liouville).
We can then take special local coordinates qi(x) = Hi(x) (action
variables) and (p1, . . . ,pn)(x) = t ∈ Rn, such that t.x0 = x (angle
variables). The symplectic form becomes ∑dpi ∧dqi and the
Hamiltonian flow for each Hi is now linear:
t.(q1, . . . ,qn,p1, . . . ,pn) = (q1, . . . ,qn,p1, . . . ,pi − t, . . . ,pn).



Remark: Locally we can always find n commuting Hamiltonians, but if
H1, . . . ,Hn are defined globally, then there will be points where the
differentials dH1, . . . ,dHn are linearly dependent. These correspond to
lower-dimensional (singular) orbits of the Rn-action, and it is these
orbits which determine the topology of M, its global geometry and
interesting phenomena of the mechanical system.

Example: Calogero-Moser system: H = ∑
n
i=1 p2

i −∑i 6=j
1

(xi−xj)2 . It
describes the motion of n particles on the line with interaction potential
−1/x2. Why should it be completely integrable? The answer is
provided by the method of symplectic reduction.

Let (M,ω) be a symplectic manifold with an action of a Lie group G
preserving ω. A moment map for G is an equivariant map µ : M→ g∗

such that for any ρ ∈ g and v ∈ TM

〈dµ(v),ρ〉= ω(Xρ,v),

where Xρ is the vector field on M induced by ρ. In this situtation, for
any c ∈ (g∗)G, if G acts freely (and properly) on µ−1(c), then
µ−1(c)/G is a symplectic manifold of dimension dimM−2dimG.

More generally, for any coadjoint orbit O, if G acts freely and properly
on µ−1(O), then µ−1(O)/G is a symplectic manifold of dimension
dimM−2dimG + dimO.

Example. Let M = T ∗Matn(R)'Matn(R)⊕Matn(R) with the
symplectic form ω = trdX ∧dY (tr is used to identify Matn(R)∗ with
Matn(R)). The group G = PGLn(R) acting by conjugation on both
factors preserves ω and the moment map is µ(X ,Y ) = [X ,Y ]. Let O
be the adjoint orbit of diag(−1, . . . ,−1,n−1). Then µ−1(O)/G is a
symplectic manifold of dimension 2n2−2(n2−1) + 2(n−1) = 2n.
On M we have the Hamiltonians Hi = trY i , i = 1, . . . ,n. They clearly
commute, but they do not form an integrable system, since there are
too few of them. However they are also G-invariant, so they descend to
µ−1(O)/G and define there a completely integrable system.
Observe that T ∈ O iff T + I has rank 1. Consider the subset of
µ−1(O)/G with X having distinct real eigenvalues, so that X is
represented by diag(x1, . . . ,xn) with xi 6= xj . Then the diagonal entries
of [X ,Y ] are zero, and since [X ,Y ] + I has rank 1, it is of the form
[aia

−1
j ] for some nonzero numbers ai . We can use the remaining

freedom of conjugating by diagonal matrices to make all ai = 1.



Then

[X ,Y ] + I = [1] ⇐⇒ Yij =
1

xi − xj
, i 6= j.

The diagonal entries of Y are unconstrained; let us write Yii = pi .
Thus the open subset of µ−1(O)/G with X having distinct real
eigenvalues can be identified with {(xi) ∈ Rn;xi 6= xj}×Rn.
The Hamiltonian H2 = trY 2 becomes

∑p2
i +∑

i 6=j

1
(xi − xj)

1
(xj − xi)

=
n

∑
i=1

p2
i −∑

i 6=j

1
(xi − xj)2 .

Thus the Calogero-Moser system is completely integrable and,
moreover, the argument shows that the proper completion of the
phase space of this system is (the “hyperbolic” part of) µ−1(O)/G.
Example (hyperbolic Calogero-Moser). Let M,G,O be as above, but
set Hi = tr(XY )i . On the same subset of µ−1(O) as above we get
H2 = ∑

n
i=1(xipi)

2−∑i 6=j
xi xj

(xi−xj)2 . If all xi > 0, we can use the
coordinates p̃i = xipi and x̃i = logxi and obtain:

H2 =
n

∑
i=1

p̃2
i −∑

i 6=j

4

sinh2(x̃i/2− x̃j/2)
.

Lax pairs

Look again at the rational Calogero-Moser system with n commuting
Hamiltonians Hi = trY i . These Hamiltonians are constants of motions,
and so on the subset where Y has distinct eigenvalues, Y moves in a
fixed conjugacy class: Y (t) = g(t)Y (0)g(t)−1. Differentiating we get
the equation Ẏ (t) =

[
ġ(t)g(t)−1,Y (t)

]
, called the Lax equation.

Conversely, if L,M are n×n-matrices satisfying the equation

L̇ = [M,L],

then L moves in a fixed adjoint orbit, and the functions trLi ,
i = 1, . . . ,n are constants of motion. A pair (L,M) is called a Lax pair,
and finding such a pair is usually a first step in showing that a system
is completely integrable (and in finding the explicit solutions).
For the Calogero-Moser system we have

Lij = δijpi + (1−δij)
1

xi − xj
,

Mij =−δij ∑
k 6=i

1
(xi − xk )2 + (1−δij)

1
(xi − xj)2 .



Finding Lax pairs for a given integrable system is highly nontrivial.
Moreover, the above description, i.e. the integrable system arises from
a flow on a (co)-adjoint orbit of a finite-dimensional Lie group is usually
insufficient. Consider, for example, the symplectic reduction of
M = T ∗Matn(R)'Matn(R)⊕Matn(R) with respect to a non-minimal
orbit O ∈ SL(n,R). The dimension of the symplectic quotient is
dimO + 2, so that trY i , i = 1, . . . ,n, no longer provide enough
commuting Hamiltonians. Nevertheless the Hamiltonian trY 2 still
defines a completely integrable system spin Calogero-Mosero system.
The solution is to consider Lax pairs with a parameter λ ∈ C, i.e. L(λ)
and M(λ) are rational expressions in λ. The Lax equation takes the
form

∂

∂t
L(t,λ) =

[
M(t,λ),L(t,λ)

]
.

We can interpret L and M as taking values in the dual of a loop
algebra, and the flow lives on a finite-dimensional coadjoint orbit of the
loop group. The characteristic polynomial of L remains constant in t
and it defines a plane algebraic curve S with the equation:

det
(
z−L(λ)

)
= 0.

Either S itself or its smooth projective model is called the spectral
curve of the problem.
Let us consider (for simplicity!) the case, when L(λ) is a polynomial in
λ, say of degree d . Then it is natural to assume that z lives in the total
space of O(d) - the d-th power of the hyperplane line bundle over CP1

(no singularities over λ = ∞). Thus det
(
z−L(λ)

)
= 0 is compactified

in |O(d)| (or in the Hirzebruch surface Fd ). The genus of S is
(n−1)(dn−2)/2.
The coefficients of the equation define the commuting Hamiltonians.
What are the angle coordinates?

Theorem (Beauville)

Let S be a smooth compact curve in |O(d)| of genus
g = (n−1)(dn−2)/2. There is a natural bijection between
GL(n,C)-conjugacy classes of Matn(C)-valued polynomials L(λ) of
degree d, the characteristic polynomial of which defines S, and line
bundles of degree g−1 on S which admit no nonzero sections.

It is actually a biholomorphism between {L(λ)}/GL(n,C) and
Jacg−1(S)−Θ (open subset of a g-dimensional torus).



The correspondence is seen from the exact sequence (here T denotes
the total space of O(d) and line bundles are pull-backs from CP1):

0→ OT(−d−1)⊕n→ OT(−1)⊕n→ E → 0,

where the first map is given by z ·1−L(λ) and E is viewed as a sheaf
on T supported on S.
In many cases the flow corresponding to the Lax equation becomes
linear on Jacg−1(S)−Θ, so the Jacobian really gives us the angle
coordinates. One such condition is that M(λ) = p(L(λ),λ)+, where
p(z,λ) is rational in λ and polynomial in z (and constant in t) and +
denotes the part polynomial in λ.
Many integrable systems (e.g. spin Calogero-Moser) fit into this
framework, i.e. they can be linearised on the Jacobian of an algebraic
curve. Such systems can the be solved (in principle!) explicitly in terms
of the theta functions of the spectral curve.
There are also many geometric problems which lead to and can be
solved via such integrable systems. I’ll describe one such: construction
of hyperkähler metrics via reduction of self-duality equations.

We consider curves in T = |O(2)| and the flow on the Jacobian in the
direction of [z/λ] ∈ H1(S,O). In other words, the flow of line bundles
has the form Et = E0⊗F t , where the transition function for F t is etz/λ.
From Et , we obtain a family of vector spaces Vt = H0(S,Et(1)) and, a
family of endomorphisms L̃(t,λ). For a given t , a choice of basis of Vt

produces a (quadratic in λ) matrix polynomial L(t,λ), but without some
canonical choice of the bases, there is no hope that L(t,λ) satisfy the
Lax equation.
Such a canonical choice is equivalent to saying that we chose parallel
sections of the vector bundle V over R, the fibre of which over t is Vt ,
i.e. to a choice of a connection on the bundle of V . One such choice is
the connection ∇0 evaluating the values (in our chosen trivialisation) of
sections at points of S over a fixed λ, say λ = 0.
The resulting equations for L(t,λ) = L0(t) + L1(t)λ + L2(t)λ2 are:

∂

∂t
L(t,λ) = [L2(t)λ,L(t,λ)] .

We take instead the Hitchin connection ∇0 + 1
2 L1(t).



We get
∂

∂t
L(t,λ) =

[
1
2

L1(t) + L2(t)λ,L(t,λ)

]
, i.e.

L̇0 =
1
2

[L1,L0],

L̇1 = [L2,L0],

L̇2 =
1
2

[L2,L1].

We now assume that L(λ) is invariant under the involution:
L(λ)→−λ̄2L(−1/λ̄)∗, i.e. L2 =−L∗0, L∗1 = L1. This implies in
particular that the curve S is invariant under the involution
(λ,z)→ (−1/λ̄,−z̄/λ̄2) and that the corresponding line bundle lives
on the “real” part of the Jacobian.
Setting L0 = T2 + iT3, L1 = 2iT1 with Ti ∈ u(n) we obtain the Nahm’s
equations:

Ṫ1 = [T2,T3], Ṫ2 = [T3,T1], Ṫ3 = [T1,T2].

We can now consider sets of solutions with different boundary
conditions: solutions regular on an interval, solutions on a half-line,
solutions with prescribed simple poles at one endpoint, solutions on
several adjoining intervals with matching conditions at the endpoints,
and also solution with values in a subalgebra of u(n).
All of these sets of solutions are hyperkähler manifolds

Examples: 1. Solutions on (0,1) with simple poles at 0 and 1, the
residues of which define the standard n-dimensional irreducible
representation of su(2) describe the moduli space of charge n
SU(2)-monopoles on R3 with its natural (and important!) metric.
(Nahm, Hurtubise, Nakajima).
2. Smooth solutions on [0,1] define a hyperkähler metric on
T ∗GL(n,C). (Kronheimer)
3. Smooth solutions on [0,+∞) such that the limits belong to fixed
regular conjugacy classes define hyperkähler metrics on adjoint orbits
of GLn(C). (Kronheimer)



This last construction is particularly interesting: the hyperkähler metric
is algebraic, but there is no known Lie-group-theoretic description of it
(unlike, say, Kähler metrics on adjoint orbits of compact groups).
Using the above methods of integrable systems and ideas of Nigel
Hitchin for monopole moduli spaces one can prove a formula for a
Kähler potential of this metric, i.e. a function K such that ω = i∂∂̄K .
The spectral curve in this case is singular: a union of n copies of CP1,
each pair having two intersection points. The Jacobian Jacg−1(S) is
isomorphic to (C∗)g and the theta function ϑ is a polynomial (similar to
a case considered by Mumford).
Then

K = X(logϑ),

where X is the vector field on Jacg−1(S) generated by the action of
[exp(tz/λ].


