
1 Hyperelliptic Surfaces

A compact Riemann surface is called hyperelliptic if it is a double cover of CP1, equivalently
if there exists a meromorphic function on the surface with exactly two poles counting with
multiplicity.

1. Consider a surface M defined by an equation

w2 = a

d∏
i=1

(z − zi) (1)

in C2, where a is a non-zero constant and zi’s are distinct points in C. Show that the two
projections (z, w) 7→ z and (z, w) 7→ w induce charts of M (as a non-compact Riemann
surface). Around which points should you use the second projection to define a chart? Show
that M 3 (z, w) 7→ z ∈ C is a double cover of C with branch points z1, · · · zd.

2. Now identify C (of z coordinate) with CP1 \ {∞}. We will extend the double covering
M 3 (z, w) 7→ z ∈ C to CP1. For this purpose, let z̃ := 1

z be a coordinate around ∞ ∈ CP1.
By properly changing the coordinate w and using z̃, obtain a regular equation defined around
z̃ = 0 which coincides with equation 1 over the intersection with C. Show that we obtain a
compact Riemann surface M and a branched double covering π : M → CP1 so that π−1(C)
is the same as M . What is the difference between the cases that d is odd and even? Is it
possible to think that the compactification is done in a line bundle of degree k over CP1 if
d = 2k or d = 2k − 1?

3. For d = 3, we can homogenize the equation 1 to obtain a compact Riemann surface sitting
in CP2. Is this surface holomorphically diffeomorphic to the one we obtained in part 2 com-
pactifying M in a line bundle? Does this compactification in CP2 work for other values of d?
Why or why not?

4. Recall that dz defines a meromorphic section of KCP1 . The pullback π∗(dz) then defines a
meromorphic section of KM . By counting zeros and poles of π∗(dz), find the degree of KM .
Identify the genus of M . See problem 2 in section 2 for the degree of canonical bundles.

This is essentially the proof of Riemann-Hurwitz formula for our special case.

5. Show that any meromorphic function onM is expressed as a rational function of z and w. Note
that the non-trivial deck transformation σ on M as a double cover of CP1 is an involution,
i.e. σ2 = idM , called the hyperelliptic involution. Decompose a given meromorphic function
into σ-invariant and σ-anti-invariant part.

6. Show that the space H0(M,KM ) of holomorphic sections of KM is a finite dimensional vector
space. Find a basis of this space. What is the dimension?

Double-check that the dimension you got is correct by computing the dimension using Riemann-
Roch theorem.
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2 Degree of Holomorphic Line Bundles

We recall the definition of the degree of line bundles.

Definition 1. Let L be a (not necessarily holomorphic) line bundle over a compact Riemann
surface M and ∇ be any connection on L, then we define the degree of L by

deg(L) :=
i

2π

∫
M

F∇ .

Here F∇ is the curvature 2-form of ∇.

Remark 1. It is known that the definition does not depend on the choice of ∇. See problem 3
and 4 in section 3

1. Let TM be the tangent bundle of a compact Riemann surface M which is considered as
a holomorphic line bundle. Induce a metric h on TM compatible with the holomorphic
structure of M . This means that with respect to holomorphic coordinates, h is locally given
as a conformally flat metric. Let ∇ be the Levi-Civita connection for metric h. Show that
F∇ = −iKhvolh , where Kh is the sectional curvature defined by

Kh = h(F∇(u, v)v, u)

in every local neighborhood with any orthonormal frame (u, v) and volh is the volume form.

2. Applying Gauss-Bonnet theorem, show that the degree of the tangent line bundle of a com-
pact Riemann surface equals 2−2g, thus that the degree of the canonical bundle equals 2g−2.

For the following problems, use the fact that any holomorphic line bundle has a non-zero
meromorphic section and that the degree of the line bundle is given by the total degree of the
section. (See Problem 3 and 4 in section 3)

3. Show that any holomorphic line bundle over a compact Riemann surface can be expressed as
a tensor product of point bundles and their inverses.

4. For holomorphic line bundles L1 =
⊗N

i=1 L(pi)
ni and L2 =

⊗M
j=1 L(qj)

mj over CP1, show that

there exists a meromophic function over CP1 whose divisor is equal to
∑N

i=1 ni·pi−
∑M

j=1mj ·qj
if and only if deg(L1) = deg(L2). Conclude that two holomorphic line bundles over CP1 are
isomorphic if and only if their degrees are equal. Based on this fact we write O(k) for the
holomorphic line bundle of degree k over CP1.
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3 Gauge Transformation and Local Expressions of Curva-
ture

Definition 2. Let E be a vector bundle with a given connection ∇. If a bundle isomorphism
g : E → E is given, then this induces a connection g ◦ ∇ ◦ g−1 on E, which is called the gauge
transformation of ∇ through g.

1. Recall that for a local frame ϕi of vector bundle E, the connection 1-form ωi ∈ Ω1(Ui, glr(C))
associated with ∇ is defined by ∇ϕi = ϕi ·ωi. Thus through the local trivializations we get a
connection d+ωi on each trivial bundle Ui×Cr. Explicitly express the gauge transformation
of d + ωi through the transition function gji (restricted on Ui ∩ Uj), where gji ∈ C∞(Ui ∩
Uj ,GLr(C)) is given by ϕi = ϕjgji. This shows how the local expressions of the connection
are transformed.

2. The curvature tensor F∇ ∈ Ω2(M,End(E)) is defined as F∇ = (d∇)2 = d∇ ◦ ∇. Show that
the curvature is locally given by F∇ϕi = ϕi (dωi + ωi ∧ ωi) in terms of the connection 1-form
ωi. What curvature will you get if you gauge transform d+ ωi by gji? This is how the local
expressions of the curvature are transformed through the transition functions gji. What if
the rank of E equals one?

3. Now let L be a holomorphic line bundle over a compact Riemann surface M and ϕ ∈M(M,L)
be a meromorphic section. So ϕ trivializes L away from its zeros and poles. Prove that

i

2π

∫
M

F∇ =
∑
z∈M

ordz(ϕ) .

4. Applying Riemann-Roch theorem, we can prove that for every line bundle there exists a
meromorphic section (how?). With this fact and the formula from part 3, show that the
definition of the degree of a line bundle does not depend on the choice of the connection, that
the total order of meromorphic sections of a given bundle does not depend on the choice of
meromorphic sections, and that the degrees of line bundles are integers.
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4 List of Theorems

Theorem 1. (Gauss-Bonnet) Let M be a smooth surface (mannifold of real dimension 2) of
genus g without boundary, h be a Riemannian metric, Kh be the sectional curvature, and volh
be the volume form. Then it follows∫

M

Khvolh = 4π(1− g) .

Theorem 2. (Riemann-Hurwitz ) Let M and N be compact Riemann surfaces and f : M → N
a holomorphic map. Then it follows

2gM − 2 = deg(f) (2gN − 2) +
∑
p∈M

(ep − 1) ,

where deg(f) is the degree of f as covering map, ep is the ramification index at p ∈M , and gM
and gN are the genus of M and N respectively.

Theorem 3. (Riemann-Roch) For any holomorphic line bundle L over a compact Riemann
surface M , it follows

dim
(
H0(M,L)

)
− dim

(
H0(M,KL−1)

)
= deg(L)− g + 1 ,

where H0(M,L) and H0(M,KL−1) denote the spaces of holomorphic sections of bundle L and
KL−1 respectively.
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