Institut für Differentialgeometrie

Prof. Knut Smoczyk, Dr. Otto Overkamp, Dr. Stefan Rosemann

Übungsblatt 8

zur Vorlesung "Geometrie für das Lehramt"

Sommersemester 2019

Aufgabe 1 (aus den Klausuren 2018). Sei $\mathcal{E} = \{\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}\}$ mit paarweise verschiedenen Elementen $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ und sei $\mathcal{G}_0 = \{\{\mathbf{A}, \mathbf{B}\}, \{\mathbf{A}, \mathbf{C}\}, \{\mathbf{A}, \mathbf{D}\}\}.$

- (a) Beweisen Sie, dass es genau eine Teilmenge $\mathbf{h} \subseteq \mathcal{E}$ mit der Eigenschaft gibt, dass das Paar $(\mathcal{E}, \mathcal{G}_0 \cup \{\mathbf{h}\})$ eine Inzidenzebene ist. (3 Punkte)
- (b) Untersuchen Sie, ob für diese Menge \mathbf{h} die Inzidenzebene $(\mathcal{E}, \mathcal{G}_0 \cup \{\mathbf{h}\})$ das Parallelenaxiom erfüllt. (3 Punkte)

Aufgabe 2 (aus den Klausuren 2018). Sei $\mathcal{E} = \{\mathbf{P} \in \mathbb{R}^2 : ||\mathbf{P}|| \neq 1\}$, sei \mathcal{G} das System aller Durchschnitte $\mathbf{g} \cap \mathcal{E}$, wobei $\mathbf{g} \subseteq \mathbb{E}^2$ eine euklidische Gerade ist, und sei die dreistellige Relation $R \subseteq \mathcal{E} \times \mathcal{E} \times \mathcal{E}$ dadurch definiert, dass $(\mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3) \in R$ für drei Punkte $\mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3 \in \mathcal{E}$ genau dann gilt, wenn $\mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3$ kollinear sind und

$$(||\mathbf{P}_1|| - 1)(||\mathbf{P}_3|| - 1)\langle \mathbf{P}_1 - \mathbf{P}_2, \mathbf{P}_3 - \mathbf{P}_2 \rangle < 0.$$

Für $\mathbf{P}_1, \mathbf{P}_3 \in \mathcal{E}, \, \mathbf{P}_1 \neq \mathbf{P}_3$, definieren wir die Strecke

$$\overline{\mathbf{P}_1\mathbf{P}_3} := {\mathbf{P}_1, \mathbf{P}_3} \cup {\mathbf{P}_2 \in \mathcal{E} : (\mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3) \in \mathbb{R}}.$$

- (a) Skizzieren Sie die Strecken \overline{AB} , \overline{AC} und \overline{BC} (bzgl. der oben definierten Relation R) für $\mathbf{A} = (0, -2)$, $\mathbf{B} = (0, 0)$ und $\mathbf{C} = (0, 2)$.
- (b) Zeigen Sie, dass $(\mathcal{E}, \mathcal{G})$, zusammen mit der Relation R, das Anordnungsaxiom (A3) nicht erfüllt. (3 Punkte)

Aufgabe 3 (aus den Klausuren 2018). Seien A, B, C drei nicht kollineare Punkte einer Hilbertebene und sei $P \in \overline{AB} \setminus \{A, B\}$. Dabei gelte $\overline{AC} \equiv \overline{BC}$ und $\angle_{ACP} \equiv \angle_{BCP}$. Beweisen Sie:

(a)
$$\overline{AP} \equiv \overline{BP}$$
. (3 Punkte)

(b) Die Winkel \angle_{APC} und \angle_{BPC} sind rechte Winkel. (3 Punkte)

Aufgabe 4 (aus den Klausuren 2018). In der euklidischen Ebene \mathbb{E}^2 betrachten wir die Punkte $\mathbf{A} = (2,1)$, $\mathbf{B} = (-6,3)$, $\mathbf{M} = (-3,-2)$, $\mathbf{P} = (4,9)$ und den Kreis $K = K(\mathbf{M}, \overline{\mathbf{M}}\overline{\mathbf{A}})$ mit Mittelpunkt \mathbf{M} durch \mathbf{A} .

- (a) Überprüfen Sie, dass $\mathbf{B} \in K$, und untersuchen Sie, ob der Punkt \mathbf{P} auf der Tangente von K durch \mathbf{B} liegt. (3 Punkte)
- (b) Berechnen Sie den Schnittpunkt der Tangenten von K durch \mathbf{A} und \mathbf{B} . (3 Punkte)
- **Aufgabe 5.** (a) In der euklidischen Ebene \mathbb{E}^2 betrachten wir die Punkte $\mathbf{M}=(3,5), \mathbf{A}=(15,10)$ und den Kreis $K=K(\mathbf{M},\overline{\mathbf{M}\mathbf{A}})$. Zeigen Sie, dass durch den Punkt $\mathbf{C}=(15,15)$ genau zwei Tangenten von K verlaufen, und berechnen Sie die Berührpunkte dieser beiden Tangenten mit K.

- (b) Sei $(\mathcal{E}, \mathcal{G}, \cdot | \cdot | \cdot, \equiv)$ eine Hilbertebene. Zeigen Sie, dass zu jeder Geraden $\mathbf{g} \in \mathcal{G}$ und jedem Punkt $\mathbf{A} \in \mathcal{G}$ mit $\mathbf{A} \notin \mathbf{g}$ genau ein Kreis mit Mittelpunkt \mathbf{A} existiert, der \mathbf{g} als Tangente hat. (2 Punkte)
- (c) Sei $(\mathcal{E}, \mathcal{G}, \cdot | \cdot | \cdot, \equiv)$ eine Hilbertebene. Zeigen Sie, dass jeder Kreis $K \subseteq \mathcal{E}$ unendlich viele Punkte enthält. (2 Punkte)

Aufgabe 6. Sei $(\mathcal{E}, \mathcal{G}, \cdot | \cdot | \cdot, \equiv)$ eine Hilbertebene.

(a) Seien $\mathbf{A}, \mathbf{B}_0, \mathbf{B}_1, \mathbf{C}_0, \mathbf{C}_1 \in \mathcal{E}$ mit \mathbf{B}_0 der Mittelpunkt von $\overline{\mathbf{A}\mathbf{B}_1}, \mathbf{C}_1$ der Mittelpunkt von $\overline{\mathbf{A}\mathbf{C}_0}$ und $\mathbf{B}_0|\mathbf{C}_0|\mathbf{B}_1$. Zeigen Sie, dass $\mathbf{A}|\mathbf{C}_1|\mathbf{B}_0$. (3 Punkte)

Sei nun $(\mathcal{E}, \mathcal{G}, \cdot | \cdot | \cdot, \equiv)$ sogar eine absolute Geometrie (d.h. es gelten zusätzlich die Vollständigkeitsaxiome (V1) und (V2)). Seien $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{E}$ mit $\mathbf{A}|\mathbf{B}|\mathbf{C}$. Betrachten Sie die Folge $(\mathbf{C}_n)_{n \in \mathbb{N}}$ aus \mathcal{E} , iterativ definiert durch die Bedingungen, dass $\mathbf{C}_0 = \mathbf{C}$ und \mathbf{C}_{n+1} der Mittelpunkt von $\overline{\mathbf{AC}_n}$ ist. Sei $(\mathbf{B}_n)_{n \in \mathbb{N}}$ die Folge aus \mathcal{E} , iterativ definiert durch die Bedingungen $\mathbf{B}_0 = \mathbf{B}, \mathbf{A}|\mathbf{B}_n|\mathbf{B}_{n+1}$ und $\overline{\mathbf{B}_n}\mathbf{B}_{n+1} \equiv \overline{\mathbf{AB}}$.

- (b) Zeigen Sie, dass es eine kleinste Zahl $n_0 \in \mathbb{N}$ gibt, mit der Eigenschaft, dass $\mathbf{A}|\mathbf{C}|\mathbf{B}_{n_0}$.

 (2 Punkte)
- (c) Zeigen Sie (z.B. durch Induktion über die Zahl n_0 aus (b)), dass ein $m_0 \in \mathbb{N}$ existiert mit $\mathbf{A}|\mathbf{C}_{m_0}|\mathbf{B}$. (3 Punkte)
 - Abgabe der Lösungen bis Montag, 17.06.2019, um 10:00 Uhr in das Fach 170 im Lichthof neben dem Haupteingang.
 - Bitte versehen Sie jedes Blatt Ihrer Lösung mit Ihrem Namen, Ihrer Matrikelnummer, dem Termin und den Namen des Tutors der Übungsgruppe in der Ihre Lösungen zurückgegeben werden sollen.
 - Gruppenabgaben von maximal drei Studierenden sind möglich.
 - Bitte tackern Sie Ihre abgegebenen Lösungen zusammen.
 - Die erste Klausur findet am Montag, 29.07.2019, zwischen 12:00 und 14:00 Uhr statt.
 - Die Studienleistung erbringen Sie
 - durch regelmäßige und aktive Teilnahme an den Übungen,
 - durch erreichen von mindestens 40% der insgesamt möglichen Punkte aus allen Aufgabenblättern.