Prof. Knut Smoczyk, Dr. Otto Overkamp, Dr. Stefan Rosemann

Lösungen zu Aufgabe 3 und 4 von Übungsblatt 9

zur Vorlesung "Geometrie für das Lehramt"

Sommersemester 2019

Aufgabe 3. Seien $\mathbf{P}, \mathbf{P}', \mathbf{Q}, \mathbf{Q}', \mathbf{R}, \mathbf{R}'$ Punkte in der euklidischen Ebene \mathbb{E}^2 mit $\mathbf{P} \neq \mathbf{P}', \mathbf{Q} \neq \mathbf{Q}'$ und $\mathbf{R} \neq \mathbf{R}'$. Außerdem seien die Geraden \mathbf{PP}' und \mathbf{QQ}' nicht parallel. Beweisen Sie, dass der Schnittpunkt \mathbf{S} von \mathbf{PP}' und \mathbf{QQ}' genau dann auch auf der Geraden \mathbf{RR}' liegt, wenn

$$0 = \det(\mathbf{P}, \mathbf{P'})\det(\mathbf{Q'} - \mathbf{Q}, \mathbf{R'} - \mathbf{R}) + \det(\mathbf{Q}, \mathbf{Q'})\det(\mathbf{R'} - \mathbf{R}, \mathbf{P'} - \mathbf{P}) + \\ + \det(\mathbf{R}, \mathbf{R'})\det(\mathbf{P'} - \mathbf{P}, \mathbf{Q'} - \mathbf{Q}).$$
(10 Punkte)

• Lösung:

- Vorbemerkung: Wir werden in der Lösung dieser Aufgabe (und auch in der Lösung zur Aufgabe 4) die bekannten Eigenschaften der Determinante benutzen. Hier nochmal eine kurze Zusammenfassung: Für alle $\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}} \in \mathbb{R}^2$ und $\alpha, \beta \in \mathbb{R}$ gilt

$$\det(\alpha \vec{\mathbf{u}} + \beta \vec{\mathbf{v}}, \vec{\mathbf{w}}) = \alpha \det(\vec{\mathbf{u}}, \vec{\mathbf{w}}) + \beta \det(\vec{\mathbf{v}}, \vec{\mathbf{w}})$$
 (Linearität in der ersten Spalte)

$$\det(\vec{\mathbf{u}},\alpha\vec{\mathbf{v}}+\beta\vec{\mathbf{w}}) = \alpha\det(\vec{\mathbf{u}},\vec{\mathbf{v}}) + \beta\det(\vec{\mathbf{u}},\vec{\mathbf{w}}) \quad \text{(Linearität in der zweiten Spalte)}$$

sowie

$$det(\vec{\mathbf{u}}, \vec{\mathbf{v}}) = -det(\vec{\mathbf{v}}, \vec{\mathbf{u}})$$
 (Antisymmetrie).

Beachte außerdem, dass gilt

$$\det(\vec{\mathbf{u}}, \vec{\mathbf{v}}) \neq 0 \iff \vec{\mathbf{u}}, \vec{\mathbf{v}} \text{ linear unabhängig.}$$

All diese Aussagen lassen sich im \mathbb{R}^2 natürlich auch direkt aus der Definition

$$\det(\vec{\mathbf{u}}, \vec{\mathbf{v}}) = u_1 v_2 - u_2 v_1$$

folgern (für
$$\vec{\mathbf{u}} = (u_1, u_2), \vec{\mathbf{v}} = (v_1, v_2)$$
).

– Im Folgenden benutzen wir außerdem die Schnittpunktformel aus Satz 5.3.13: Seien $\mathbf{g}_{\mathbf{A},\vec{\mathbf{v}}} = \mathbf{A} + \mathbb{R} \cdot \vec{\mathbf{v}} \text{ und } \mathbf{g}_{\mathbf{B},\vec{\mathbf{w}}} = \mathbf{B} + \mathbb{R} \cdot \vec{\mathbf{w}} \text{ zwei nicht-parallele Geraden in } \mathbb{E}^2 \text{ (d.h. } \vec{\mathbf{v}},\vec{\mathbf{w}} \text{ sind linear unabhängig) und sei } \mathbf{O} \in \mathbb{E}^2 \text{ ein beliebiger Punkt. Dann ist der Schnittpunkt } \mathbf{S} \text{ von } \mathbf{g}_{\mathbf{A},\vec{\mathbf{v}}} \text{ und } \mathbf{g}_{\mathbf{B},\vec{\mathbf{w}}} \text{ durch die Gleichung}$

$$\mathbf{S} = \mathbf{O} + \frac{1}{\det(\vec{\mathbf{v}}, \vec{\mathbf{w}})} \left(\det(\overrightarrow{\mathbf{OB}}, \vec{\mathbf{w}}) \vec{\mathbf{v}} - \det(\overrightarrow{\mathbf{OA}}, \vec{\mathbf{v}}) \vec{\mathbf{w}} \right)$$

gegeben. Beachte, dass in der Vorlesung die Notation $[\vec{\mathbf{v}}, \vec{\mathbf{w}}] := \det(\vec{\mathbf{v}}, \vec{\mathbf{w}})$ benutzt wurde. Desweiteren setzen wir $\mathbf{O} = (0,0)$ und identifizieren jeden Punkt $\mathbf{P} \in \mathbb{E}^2$ mit seinem Verbindungsvektor $\overrightarrow{\mathbf{OP}} = \mathbf{P} - \mathbf{O}$. Obige Formel wird dann zu

$$\mathbf{S} = \frac{1}{\det(\vec{\mathbf{v}}, \vec{\mathbf{w}})} \left(\det(\mathbf{B}, \vec{\mathbf{w}}) \vec{\mathbf{v}} - \det(\mathbf{A}, \vec{\mathbf{v}}) \vec{\mathbf{w}} \right).$$

– Im Fall, dass $\mathbf{g}_{\mathbf{A},\vec{\mathbf{v}}} = \mathbf{P}\mathbf{P}'$, also $\mathbf{A} = \mathbf{P}$ und $\vec{\mathbf{v}} = \mathbf{P}' - \mathbf{P}$, und $\mathbf{g}_{\mathbf{B},\vec{\mathbf{w}}} = \mathbf{Q}\mathbf{Q}'$, also $\mathbf{B} = \mathbf{Q}$ und $\vec{\mathbf{w}} = \mathbf{Q}' - \mathbf{Q}$, erhalten wir für den Schnittpunkt \mathbf{S} von $\mathbf{P}\mathbf{P}'$ und $\mathbf{Q}\mathbf{Q}'$ die Formel

$$\begin{split} \mathbf{S} &= \frac{1}{\det(\mathbf{P}' - \mathbf{P}, \mathbf{Q}' - \mathbf{Q})} \left(\det(\mathbf{Q}, \mathbf{Q}' - \mathbf{Q}) (\mathbf{P}' - \mathbf{P}) - \det(\mathbf{P}, \mathbf{P}' - \mathbf{P}) (\mathbf{Q}' - \mathbf{Q}) \right) \\ &= \frac{1}{\det(\mathbf{P}' - \mathbf{P}, \mathbf{Q}' - \mathbf{Q})} \left(\det(\mathbf{Q}, \mathbf{Q}') (\mathbf{P}' - \mathbf{P}) - \det(\mathbf{P}, \mathbf{P}') (\mathbf{Q}' - \mathbf{Q}) \right). \end{split}$$

- Dieser liegt auf **RR**' genau dann, wenn

$$\det(\mathbf{S}, \mathbf{R}' - \mathbf{R}) = \det(\mathbf{R}, \mathbf{R}' - \mathbf{R}) = \det(\mathbf{R}, \mathbf{R}').$$

Setzt man S aus obiger Gleichung ein, erhalten wir, dass S auf RR' liegt, genau dann, wenn

$$\det(\mathbf{R}, \mathbf{R}') =$$

$$=\frac{1}{\det(\mathbf{P'}-\mathbf{P},\mathbf{Q'}-\mathbf{Q})}\left(\det(\mathbf{Q},\mathbf{Q'})\det(\mathbf{P'}-\mathbf{P},\mathbf{R'}-\mathbf{R})-\det(\mathbf{P},\mathbf{P'})\det(\mathbf{Q'}-\mathbf{Q},\mathbf{R'}-\mathbf{R})\right).$$

- Multipliziert man diese Gleichung noch mit $\det(\mathbf{P}' - \mathbf{P}, \mathbf{Q}' - \mathbf{Q})$, ergibt sich nach umstellen der Terme die zu zeigende Gleichung.

Aufgabe 4. Seien $A, B, C \in \mathbb{E}^2$ drei Punkte in allgemeiner Lage, sei $\lambda \in \mathbb{R}$ und sei

$$\mathbf{D} = \lambda \mathbf{B} + (1 - \lambda)\mathbf{C}, \quad \mathbf{E} = \lambda \mathbf{C} + (1 - \lambda)\mathbf{A}, \quad \mathbf{F} = \lambda \mathbf{A} + (1 - \lambda)\mathbf{B}.$$

- (a) Zeigen Sie, dass keine zwei der Geraden AD, BE und CF parallel sind. (5 Punkte)
- (b) Untersuchen Sie, für welche $\lambda \in \mathbb{R}$ sich die Geraden **AD**, **BE** und **CF** in einem Punkt schneiden. (5 Punkte)
 - Lösung (a):
 - Es gilt

Es gilt
$$\overrightarrow{AD} = \mathbf{D} - \mathbf{A} = \lambda \overrightarrow{AB} + (1 - \lambda) \overrightarrow{AC},$$

$$\overrightarrow{BE} = \mathbf{E} - \mathbf{B} = \lambda \overrightarrow{BC} + (1 - \lambda) \overrightarrow{BA},$$

$$\overrightarrow{CF} = \mathbf{F} - \mathbf{C} = \lambda \overrightarrow{CA} + (1 - \lambda) \overrightarrow{CB}.$$
bzw. (mit $\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB}$, $\overrightarrow{BA} = -\overrightarrow{AB}$, $\overrightarrow{CA} = -\overrightarrow{AC}$ und $\overrightarrow{CB} = \overrightarrow{AB} - \overrightarrow{AC}$)
$$\overrightarrow{BE} = \mathbf{E} - \mathbf{B} = -\overrightarrow{AB} + \lambda \overrightarrow{AC},$$

$$\overrightarrow{CF} = \mathbf{F} - \mathbf{C} = (1 - \lambda) \overrightarrow{AB} - \overrightarrow{AC}.$$

- Die Parallelität von **AD** und **BE** ist gleichbedeutend mit der linearen Abhängigkeit von den Richtungsvektoren \overrightarrow{AD} und \overrightarrow{BE} . Weil beide Vektoren verschieden vom Nullvektor sind (da \overrightarrow{AB} , \overrightarrow{AC} bzw. \overrightarrow{BC} , \overrightarrow{BA} jeweils linear unabhängig sind), bedeutet linear abhängig in dem Fall, dass ein $c \neq 0$ existiert mit

$$\overrightarrow{AD} = c\overrightarrow{BE}$$
.

$$\lambda \overrightarrow{AB} + (1 - \lambda) \overrightarrow{AC} = -c \overrightarrow{AB} + c\lambda \overrightarrow{AC}.$$

Ein Koeffizientenvergleich liefert $c=-\lambda$ und $c\lambda=1-\lambda$, also, $-\lambda^2=1-\lambda$. Die Gleichung $0=\lambda^2-\lambda+1=(\lambda-\frac{1}{2})^2+\frac{3}{4}$ hat allerdings keine reelle Lösungen. Dementsprechend sind \mathbf{AD} und \mathbf{BE} für alle $\lambda\in\mathbb{R}$ nicht parallel. Analog argumentiert man für die anderen Geradenpaare.

- Lösung (b):
 - Nach Aufgabe 3 schneiden sich die drei Geraden AD, BE und CF genau dann in einem Punkt, wenn

$$0 = \det(\mathbf{A}, \mathbf{D})\det(\overrightarrow{\mathbf{BE}}, \overrightarrow{\mathbf{CF}}) + \det(\mathbf{B}, \mathbf{E})\det(\overrightarrow{\mathbf{CF}}, \overrightarrow{\mathbf{AD}}) + \det(\mathbf{C}, \mathbf{F})\det(\overrightarrow{\mathbf{AD}}, \overrightarrow{\mathbf{BE}}).$$

- Mit

$$\det(\overrightarrow{\mathbf{BE}},\overrightarrow{\mathbf{CF}}) = \det(-\overrightarrow{\mathbf{AB}} + \lambda \overrightarrow{\mathbf{AC}}, (1-\lambda)\overrightarrow{\mathbf{AB}} - \overrightarrow{\mathbf{AC}}) = (\lambda^2 - \lambda + 1)\det(\overrightarrow{\mathbf{AB}}, \overrightarrow{\mathbf{AC}}),$$

$$\det(\overrightarrow{\mathbf{CF}}, \overrightarrow{\mathbf{AD}}) = \det((1-\lambda)\overrightarrow{\mathbf{AB}} - \overrightarrow{\mathbf{AC}}, \lambda \overrightarrow{\mathbf{AB}} + (1-\lambda)\overrightarrow{\mathbf{AC}}) = (\lambda^2 - \lambda + 1)\det(\overrightarrow{\mathbf{AB}}, \overrightarrow{\mathbf{AC}}),$$

$$\det(\overrightarrow{\mathbf{AD}}, \overrightarrow{\mathbf{BE}}) = \det(\lambda \overrightarrow{\mathbf{AB}} + (1-\lambda)\overrightarrow{\mathbf{AC}}, -\overrightarrow{\mathbf{AB}} + \lambda \overrightarrow{\mathbf{AC}}) = (\lambda^2 - \lambda + 1)\det(\overrightarrow{\mathbf{AB}}, \overrightarrow{\mathbf{AC}}),$$
erhalten wir, dass sich die drei Geraden $\overrightarrow{\mathbf{AD}}, \overrightarrow{\mathbf{BE}}$ und $\overrightarrow{\mathbf{CF}}$ genau dann in einem

Punkt schneiden, wenn

$$0 = (\lambda^2 - \lambda + 1)\det(\overrightarrow{\mathbf{AB}}, \overrightarrow{\mathbf{AC}})(\det(\mathbf{A}, \mathbf{D}) + \det(\mathbf{B}, \mathbf{E}) + \det(\mathbf{C}, \mathbf{F})).$$

- Benutzen wir nun noch

$$det(\mathbf{A}, \mathbf{D}) = \lambda det(\mathbf{A}, \mathbf{B}) + (1 - \lambda) det(\mathbf{A}, \mathbf{C}),$$

$$det(\mathbf{B}, \mathbf{E}) = \lambda det(\mathbf{B}, \mathbf{C}) - (1 - \lambda) det(\mathbf{A}, \mathbf{B}),$$

$$det(\mathbf{C}, \mathbf{F}) = -\lambda det(\mathbf{A}, \mathbf{C}) - (1 - \lambda) det(\mathbf{B}, \mathbf{C}),$$

also

$$\det(\mathbf{A}, \mathbf{D}) + \det(\mathbf{B}, \mathbf{E}) + \det(\mathbf{C}, \mathbf{F}) = (2\lambda - 1)(\det(\mathbf{A}, \mathbf{B}) + \det(\mathbf{B}, \mathbf{C}) + \det(\mathbf{C}, \mathbf{A})),$$

erhalten wir, dass sich die drei Geraden **AD**, **BE** und **CF** genau dann in einem Punkt schneiden, wenn

$$0 = (2\lambda - 1)(\lambda^2 - \lambda + 1)\det(\overrightarrow{\mathbf{AB}}, \overrightarrow{\mathbf{AC}})(\det(\mathbf{A}, \mathbf{B}) + \det(\mathbf{B}, \mathbf{C}) + \det(\mathbf{C}, \mathbf{A}))$$
$$= (2\lambda - 1)(\lambda^2 - \lambda + 1)\det(\overrightarrow{\mathbf{AB}}, \overrightarrow{\mathbf{AC}})(-\det(\mathbf{B} - \mathbf{A}, \mathbf{A}) + \det(\mathbf{B} - \mathbf{A}, \mathbf{C}))$$
$$= (2\lambda - 1)(\lambda^2 - \lambda + 1)\det(\overrightarrow{\mathbf{AB}}, \overrightarrow{\mathbf{AC}})^2.$$

– Da $\lambda^2 - \lambda + 1 = 0$ keine reellen Lösungen hat und $\det(\overrightarrow{\mathbf{AB}}, \overrightarrow{\mathbf{AC}}) \neq 0$, ist obige Gleichung genau dann erfüllt, wenn $\lambda = \frac{1}{2}$.