Leibniz-Universität Hannover

Institut für Differentialgeometrie

Prof. Knut Smoczyk, Dr. Benedict Meinke, Dr. Stefan Rosemann, Dr. Norman Zergänge

Übungsblatt 2

zur Vorlesung "Geometrie für das Lehramt"

Sommersemester 2020

Aufgabe 2.1. Bezeichne \mathbb{E}^2 das affine Modell der euklidischen Ebene. Betrachten Sie die euklidische Abstandsfunktion $d(\mathbf{A}, \mathbf{B}) = \sqrt{(A_1 - B_1)^2 + (A_2 - B_2)^2}$ für Punkte $\mathbf{A} = (A_1, A_2)$, $\mathbf{B} = (B_1, B_2)$ aus \mathbb{E}^2 .

- (a) Seien $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathbb{E}^2$ paarweise verschieden. Zeigen Sie, dass $\mathbf{A}|\mathbf{B}|\mathbf{C}$ genau dann gilt, wenn $d(\mathbf{A}, \mathbf{C}) = d(\mathbf{A}, \mathbf{B}) + d(\mathbf{B}, \mathbf{C})$. (5 Punkte)
- (b) Seien $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D} \in \mathbb{E}^2$ vier Punkte mit $\mathbf{A}|\mathbf{B}|\mathbf{C}$ und $\mathbf{A}|\mathbf{C}|\mathbf{D}$. Zeigen Sie mit (a), dass dann auch $\mathbf{A}|\mathbf{B}|\mathbf{D}$ und $\mathbf{B}|\mathbf{C}|\mathbf{D}$. (5 Punkte)

Aufgabe 2.2. Betrachten Sie die relativen euklidischen Geometrien $\mathbb{E}^2|_M$ für die Mengen

(a)
$$M = \mathbb{R}^2 \setminus \mathbb{Z}^2 = \{(x, y) \in \mathbb{R}^2 : x \notin \mathbb{Z} \text{ oder } y \notin \mathbb{Z}\},$$
 (5 Punkte)

(b)
$$M = \{(x, y) \in \mathbb{R}^2 : y \le \sin(x)\},$$
 (5 Punkte)

zusammen mit der Einschränkung $\mathcal{Z} \subseteq M \times M \times M$ der Zwischenrelation von \mathbb{E}^2 . Untersuchen Sie jeweils, welche der Anordnungsaxiome (A1)–(A4) von ($\mathbb{E}^2|_M, \mathcal{Z}$) erfüllt werden.

Aufgabe 2.3. Sei $(\mathcal{E}, \mathcal{G}, \cdot | \cdot | \cdot)$ eine angeordnete Inzidenzebene und sei $\mathbf{P} \in \mathcal{E}$ beliebig. Betrachten Sie $(\mathcal{E}_0, \mathcal{G}_0)$ mit $\mathcal{E}_0 = \mathcal{E} \setminus \{\mathbf{P}\}$ und $\mathcal{G}_0 = \{\mathbf{g} \cap \mathcal{E}_0 : \mathbf{g} \in \mathcal{G}\}$ zusammen mit der Einschränkung $\mathcal{Z} \subseteq \mathcal{E}_0 \times \mathcal{E}_0 \times \mathcal{E}_0$ der Zwischenrelation von $(\mathcal{E}, \mathcal{G}, \cdot | \cdot | \cdot)$.

- (a) Zeigen Sie, dass $(\mathcal{E}_0, \mathcal{G}_0)$ eine Inzidenzebene ist. (5 Punkte)
- (b) Zeigen Sie, dass $(\mathcal{E}_0, \mathcal{G}_0, \mathcal{Z})$ keine angeordnete Inzidenzebene ist. (5 Punkte)

Aufgabe 2.4. Wir betrachten den Restklassenkörper $\mathbb{F}_5 = \{0, 1, 2, 3, 4\}$ als eine Gerade auf der die Punkte 0, 1, 2, 3, 4 liegen. Wir definieren eine dreistellige Relation $\cdot | \cdot |$ auf \mathbb{F}_5 : Für $a, b, c \in \mathbb{F}_5$ gelte a|b|c genau dann, wenn $a \neq c$ und b = 3(a + c).

- (a) Überprüfen Sie, dass · | · | · den Anordnungsaxiomen (A1)–(A3) genügt. (5 Punkte)
- (b) Finden Sie $a, b, c, d \in \mathbb{F}_5$ derart, dass a|b|c und b|c|d gilt, aber nicht a|b|d. (5 Punkte)

BITTE DIE HINWEISE AUF DER RÜCKSEITE BEACHTEN!

- Es sind Gruppenabgaben von bis zu 3 Studierenden erlaubt.
- Versehen Sie jede Ihrer Abgaben mit Name, Vorname, Matrikelnummer und E-Mail-Adresse aller an der Abgabe Beteiligten.
- Die Einreichung erfolgt bitte nur in Form einer einzelnen PDF-Datei durch eine der an der Abgabe beteiligten Personen.
- Als Dateinamen ihrer Abgabe wählen Sie bitte **02-Matrikelnummer**, wobei "**Matrikelnummer**" die Matrikelnummer des/der Einreichenden ist.
- Bitte reichen Sie Ihre Lösungen bis spätestens 08:00 am Donnerstag, 07.05.2020, unter dem im Stud.IP zu findenden Upload-Link ein.
- Die Studienleistung erbringen Sie durch erreichen von mindestens 40% der insgesamt möglichen Punkte aus allen Aufgabenblättern.