Leibniz-Universität Hannover

Institut für Differentialgeometrie

Prof. Knut Smoczyk, Dr. Benedict Meinke, Dr. Stefan Rosemann, Dr. Norman Zergänge

Übungsblatt 3

zur Vorlesung "Geometrie für das Lehramt"

Sommersemester 2020

Aufgabe 3.1. Beweisen Sie, dass in jeder angeordneten Inzidenzebene $(\mathcal{E}, \mathcal{G}, \cdot | \cdot | \cdot)$ die folgenden Aussagen gelten.

- (a) Gelten für $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E} \in \mathcal{E}$ die Beziehungen $\mathbf{A}|\mathbf{B}|\mathbf{C}, \mathbf{A}|\mathbf{D}|\mathbf{E}$ und $\mathbf{A}\mathbf{B} \neq \mathbf{A}\mathbf{D}$, so schneiden sich die Strecken $\overline{\mathbf{C}\mathbf{D}}$ und $\overline{\mathbf{B}\mathbf{E}}$ in einem Punkt \mathbf{S} . (5 Punkte)
- (b) Die Menge \mathcal{G} der Geraden enthält unendlich viele Elemente. (5 Punkte)

Aufgabe 3.2. Betrachten Sie die Punkte $\mathbf{A} = 2 + 2i$, $\mathbf{B} = 7 + 3i$ im Halbebenenmodell \mathbb{H}^2 der hyperbolischen Ebene.

- (a) Zeigen Sie, dass die Punkte $\mathbf{C} = 1 + 2i$, $\mathbf{D} = 4 + i$ und $\mathbf{E} = 4 + 6i$ nicht auf der (hyperbolischen) Geraden $\mathbf{g} = \mathbf{A}\mathbf{B}$ liegen und untersuchen Sie, welche der Aussagen $(\mathbf{C}, \mathbf{D})|_{\mathbf{g}}$, $(\mathbf{C}, \mathbf{E})|_{\mathbf{g}}$ und $(\mathbf{D}, \mathbf{E})|_{\mathbf{g}}$ gelten. Berechnen Sie im Fall, dass die beiden Punkte nicht auf derselben Seite von \mathbf{g} liegen, den Schnittpunkt der Verbindungsstrecke der Punkte mit \mathbf{g} .
- (b) Untersuchen Sie, ob die Punkte $\mathbf{C}' = 8 + 2i$, $\mathbf{D}' = 2 + 3i$ und $\mathbf{E}' = \frac{3}{2} + \frac{\sqrt{3}}{2}i$ auf dem Strahl $\vec{\mathbf{S}}(\mathbf{A}, \mathbf{B})$ oder auf dem Strahl $\vec{\mathbf{S}}(\mathbf{B}, \mathbf{A})$ liegen. (3 Punkte)

Aufgabe 3.3. In der euklidischen Ebene \mathbb{E}^2 betrachten wir die Punkte $\mathbf{A}=(3,2), \mathbf{B}=(11,18), \mathbf{C}=(17,0)$ und eine Gerade \mathbf{g} , auf der keiner der Punkte $\mathbf{A},\mathbf{B},\mathbf{C}$ liegt. Da $\mathbf{A},\mathbf{B},\mathbf{C}$ in allgemeiner Lage sind, schneidet \mathbf{g} nach dem Satz von Pasch keine oder genau zwei der Strecken $\overline{\mathbf{AB}}, \overline{\mathbf{BC}}, \overline{\mathbf{CA}}$. Untersuchen Sie, welcher dieser Fälle für $\mathbf{g}=\{\mathbf{S}+t\vec{\mathbf{v}}:t\in\mathbb{R}\}$ mit

(a)
$$\mathbf{S} = (-1, 10), \, \vec{\mathbf{v}} = (-7, 1),$$
 (5 Punkte)

(b)
$$\mathbf{S} = (2,4), \, \vec{\mathbf{v}} = (1,2),$$
 (5 Punkte)

eintritt, und bestimmen Sie gegebenenfalls die Schnittpunkte der Strecken mit g.

Aufgabe 3.4. Sei $(\mathcal{E}, \mathcal{G}, \cdot | \cdot | \cdot)$ eine angeordnete Inzidenzebene, sei $\mathbf{g} \in \mathcal{G}$ und seien $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D} \in \mathbf{g}$ paarweise verschiedene Punkte.

(a) Beweisen Sie die Implikation

$$\mathbf{B} \in \overline{\mathbf{AC}} \text{ und } \mathbf{C} \in \overline{\mathbf{BD}} \implies \overline{\mathbf{AB}} \cup \overline{\mathbf{BC}} \cup \overline{\mathbf{CD}} = \overline{\mathbf{AD}}.$$
 (5 Punkte)

(b) Untersuchen Sie, ob auch die Umkehrung der Implikation aus (a) gilt. (5 Punkte)

BITTE DIE HINWEISE AUF DER RÜCKSEITE BEACHTEN!

- Es sind Gruppenabgaben von bis zu 3 Studierenden erlaubt.
- Versehen Sie jede Ihrer Abgaben mit Name, Vorname, Matrikelnummer und E-Mail-Adresse aller an der Abgabe Beteiligten.
- Die Einreichung erfolgt bitte nur in Form einer einzelnen PDF-Datei durch eine der an der Abgabe beteiligten Personen.
- Als Dateinamen ihrer Abgabe wählen Sie bitte **03-Matrikelnummer**, wobei "**Matrikelnummer**" die Matrikelnummer der/des Einreichenden ist.
- Bitte reichen Sie Ihre Lösungen bis spätestens 08:00 am Donnerstag, 14.05.2020, unter dem im Stud.IP zu findenden Upload-Link ein.
- Die Studienleistung erbringen Sie durch erreichen von mindestens 40% der insgesamt möglichen Punkte aus allen Aufgabenblättern.