Institut für Differentialgeometrie

Prof. Knut Smoczyk, Dr. Benedict Meinke, Dr. Stefan Rosemann, Dr. Norman Zergänge

Übungsblatt 11

zur Vorlesung "Geometrie für das Lehramt"

Sommersemester 2020

- **Aufgabe 11.1.** (a) In \mathbb{E}^2 sind die Punkte $\mathbf{M}_1 = (1, -1)$, $\mathbf{M}_2 = (3, 5)$ und $\mathbf{S} = (4, 2)$ gegeben. Bestimmen Sie die Eckpunkte $\mathbf{A}, \mathbf{B}, \mathbf{C}$ des Dreiecks in \mathbb{E}^2 , für das \mathbf{M}_1 und \mathbf{M}_2 die Mittelpunkte der Seiten $\overline{\mathbf{AB}}$ bzw. $\overline{\mathbf{BC}}$ sind und \mathbf{S} der Schnittpunkt der Seitenhalbierenden ist. (5 Punkte)
 - (b) In der euklidischen Ebene \mathbb{E}^2 sind die Punkte

$$\mathbf{D} = \left(\frac{6}{5}, \frac{17}{5}\right), \quad \mathbf{E} = \left(\frac{6}{5}, -\frac{7}{5}\right) \quad \text{und} \quad \mathbf{M} = (3, 1)$$

gegeben. Zeigen Sie, dass es genau ein gleichschenkliges Dreieck $\Delta_{\mathbf{ABC}}$ in \mathbb{E}^2 mit Basis $\overline{\mathbf{BC}}$ gibt, für das \mathbf{M} der Mittelpunkt des Inkreises K_{in} ist und \mathbf{D} und \mathbf{E} die Berührpunkte von K_{in} mit \mathbf{AB} bzw. \mathbf{AC} sind, und berechnen Sie die Eckpunkte \mathbf{A} , \mathbf{B} , \mathbf{C} dieses Dreiecks. (5 Punkte)

- **Aufgabe 11.2.** (a) Betrachten Sie die Geraden $\mathbf{m}_1 = \{(x,y) \in \mathbb{E}^2 : x y = 1\}$, $\mathbf{m}_2 = \{(x,y) \in \mathbb{E}^2 : -x y = 1\}$ sowie den Punkt $\mathbf{H} = (1,2)$. Berechnen Sie die Eckpunkte $\mathbf{A}, \mathbf{B}, \mathbf{C}$ des Dreiecks in \mathbb{E}^2 , so dass \mathbf{m}_1 und \mathbf{m}_2 die Mittelsenkrechten von $\overline{\mathbf{AB}}$ bzw. $\overline{\mathbf{BC}}$ sind und \mathbf{H} der Schnittpunkt der Höhen ist. (5 Punkte)
 - (b) In der euklidischen Ebene \mathbb{E}^2 sind die Punkte $\mathbf{M}_1 = (3, -3), \ \mathbf{M}_2 = (4, 4)$ und $\mathbf{M} = (1, -2)$ gegeben. Berechnen Sie die Eckpunkte $\mathbf{A}, \mathbf{B}, \mathbf{C}$ des Dreiecks in \mathbb{E}^2 , so dass \mathbf{M}_1 und \mathbf{M}_2 die Mittelpunkte der Seiten $\overline{\mathbf{AB}}$ bzw. $\overline{\mathbf{BC}}$ sind und \mathbf{M} der Schnittpunkt der Mittelsenkrechten ist. (5 Punkte)

Aufgabe 11.3. Betrachten Sie das Dreieck Δ_{ABC} mit Eckpunkten $\mathbf{A} = (-7, -11), \mathbf{B} = (16, 12)$ und $\mathbf{C} = (-7, 19).$

- (a) Bestimmen Sie den Umkreismittelpunkt \mathbf{M}_{um} , den Höhenschnittpunkt \mathbf{H} und den Schwerpunkt \mathbf{S} von $\Delta_{\mathbf{ABC}}$. (4 Punkte)
- (b) Bestimmen Sie den Radius $r_{\rm um}$ des Umkreises von $\Delta_{\rm ABC}$. (2 Punkte)
- (c) Berechnen Sie die Höhenfußpunkte \mathbf{H}_b und \mathbf{H}_c . (2 Punkte)
- (d) Finden Sie alle Tangenten des Umkreises K von Δ_{ABC} , die parallel zur x-Achse sind. (2 Punkte)
- **Aufgabe 11.4.** (a) Sei Δ_{ABC} ein Dreieck in \mathbb{E}^2 . Seien $D, D' \in \overline{AB}$ die Berührpunkte des Inkreises bzw. des Ankreises mit der Seite \overline{AB} . Zeigen Sie, dass

$$\frac{|\overline{\mathbf{B}}\overline{\mathbf{D}}|}{|\overline{\mathbf{A}}\overline{\mathbf{D}}|} = \frac{\tan(\alpha/2)}{\tan(\beta/2)} = \frac{|\overline{\mathbf{A}}\overline{\mathbf{D}'}|}{|\overline{\mathbf{B}}\overline{\mathbf{D}'}|}.$$
 (5 Punkte)

(b) Beweisen Sie, dass der Umkreismittelpunkt und der Inkreismittelpunkt eines Dreiecks Δ_{ABC} in \mathbb{E}^2 genau dann übereinstimmen, wenn das Dreieck gleichseitig ist.

(5 Punkte)

BITTE DIE HINWEISE AUF DER RÜCKSEITE BEACHTEN!

- Es sind Gruppenabgaben von bis zu 3 Studierenden erlaubt.
- Versehen Sie jede Ihrer Abgaben mit Name, Vorname, Matrikelnummer und E-Mail-Adresse aller an der Abgabe Beteiligten.
- Die Einreichung erfolgt bitte nur in Form einer einzelnen PDF-Datei durch eine der an der Abgabe beteiligten Personen.
- Als Dateinamen ihrer Abgabe wählen Sie bitte 11-Matrikelnummer, wobei "Matrikelnummer" die Matrikelnummer der/des Einreichenden ist.
- Bitte reichen Sie Ihre Lösungen bis spätestens **08:00** am Montag, **20.07.2020**, unter dem im Stud.IP zu findenden Upload-Link ein.
- Die Studienleistung erbringen Sie durch erreichen von mindestens 40% der insgesamt möglichen Punkte aus allen Aufgabenblättern.