• Zielgruppen
  • Suche
 

Dr. Stefan Rosemann

Homepage:http://www.differentialgeometrie.uni-hannover.de
E-Mail:stefan.rosemannmath.uni-hannover.de
Telefon:+49 511 762 3549
Fax:+49 511 762 2179
Anschrift:Welfengarten 1, 30167 Hannover
Raum: C418 (1101)

Publications and Preprints

  • Slodowy slices and the complete integrability of Mishchenko-Fomenko subalgebras on regular adjoint orbits, preprint,  arXiv:1803.04942, 2018 (with P. Crooks, M. Röser)
  • Local description of Bochner-flat (pseudo-)Kähler metrics, accepted to Comm. Anal. Geom., arXiv:1709.08877, 2017 (with A. Bolsinov)
  • Local normal forms for c-projectively equivalent metrics and proof of the Yano-Obata conjecture in arbitrary signature. Proof of the projective Lichnerowicz conjecture for Lorentzian metrics, preprint, arXiv:1510.00275, 2015 (with A. Bolsinov, V.S. Matveev)
  • The degree of mobility of Einstein metrics, J. Geom. Phys. 99 (2016), 42-56, arXiv:1503.00968, (with V.S. Matveev)
  • Curvature and the c-projective mobility of Kaehler metrics with hamiltonian 2-forms, Compositio Mathematica 152 (2016) 1555-1575, arXiv:1501.04841, (with D.M.J. Calderbank, V.S. Matveev)
  • Open problems in the theory of finite-dimensional integrable systems and related fields, J. Geom. Phys. 87 (2015), 396-414, (with K. Schöbel)
  • Four-dimensional Kähler metrics admitting c-projective vector fields, J. Math. Pures Appl. 103 (2015), no. 3, 619-657, arXiv:1311.0517, (with A. Bolsinov, V.S. Matveev, T. Mettler)
  • Conification construction for Kaehler manifolds and its application in c-projective geometry, Adv. Math. 274(2015), 1-3, arXiv:1307.4987, (with V.S. Matveev)
  • Two remarks on PQ-projectivity of Riemannian metrics, Glasgow Mathematical Journal 55(2013) no 1 pp 131-138, arXiv:1108.2965, (with V.S. Matveev)
  • Proof of the Yano-Obata Conjecture for holomorph-projective transformations, J. Diff. Geom. 92(2012) 221-261, arXiv:1103.5613, (with V.S. Matveev)
  • The Tanno-Theorem for Kählerian metrics with arbitrary signature, Differential Geom. Appl. 29 (2011), suppl. 1, S71–S79. , arXiv:1012.1181, (with A. Fedorova)
  • The only Kähler manifold with degree of mobility >=3 is CP(n) with Fubini-Study metric, London Math. Soc. 105(2012) no. 1, 153-188, arXiv:1009.5530, (with A. Fedorova, V. Kiosak, V.S. Matveev)